An Efficient Load Balancing Multi-core Frequent Patterns Mining Algorithm

Kun-Ming Yu, Shu-Hao Wu
Department of Computer Science and Information Engineering, Chung Hua University
Hsinchu, Taiwan
yu@chu.edu.tw, wushuhaur@gmail.com

Abstract—Mining frequent pattern from transactional database is an important problem in data mining. Many methods have been proposed to solve this problem. However, the computation time still increase significantly while the data size grows. Therefore, parallel computing is a good strategy to solve this problem. Researchers have proposed various parallel and distributed algorithms on cluster system, grid system. However, the construction and maintenance cost is pretty high. In this paper, a multi-core load balancing frequent pattern mining algorithm is presented. The main goal of the proposed algorithm is to reduce the massive duplicated candidates generated in previous method. In order to verify the performance, we also implemented the proposed algorithm as well as previous methods for comparison. The experimental results showed that our method could reduce the computation time dramatically with more threads. Moreover, we could observe that the workload was equally dispatched to each computing unit.

Keywords: multi-core; frequent pattern mining; load balancing; association rules

I. INTRODUCTION

In the digital era, much of the information is large and fast output. To discover the important information is much harder than before. Data mining is a useful technique which could help people to find and discover hidden rules from data. Applying the results of data mining in the planning of company’s strategy could effectively increase the profit and reduce the risks.

There are many techniques had been proposed to discover the essential information from transaction-oriented database for mining association rules, time series, classification, etc. However, the performance is the key issue while mining large data set. Many methods also were proposed to improve the efficiency [5, 6, 7]. On the other hand, the technological advances in hardware architectures are from single core, multi-core, cluster system [8, 9] to cloud system, and graphical processing units (GPU) [13]. These improvements could provide more computation power.

In order to achieve the better performance in multi-core computing system, the traditional data mining algorithm must be re-designed in order to take the advantages of multi-core hardware architectures. Firstly, to avoid duplicated computation tasks and CPU idle time are critical issue. In this paper, three strategies were proposed to solve these problems to achieve better performance in multi-core system. The main concept is to avoid duplicated candidate in candidate generation stage. Moreover, in order to verify the performance of proposed algorithm, we also implemented our proposed algorithm and compared with other algorithms.

This paper is organized as follows: in Section 2, Apriori, AprioriTid algorithms are described. Then, the proposed algorithm is introduced in Section 3 and Section 4 illustrates our experimental results. Finally, the conclusion is given in Section 5.

II. RELATED WORKS

Most of classical data mining algorithms were designed for single-core computer architectures; however, the computation time is pretty long while the data set is large. Therefore, various methods based on distributed computing system were proposed to improve the performance. Many parallel algorithms have been proposed to speed up the computation time of data mining algorithm, but most of them are designed for computer clusters or grid systems.

In cluster system, multiple computers on the network were linked to share the computation and storage resources. But it is hard to balance the workload of each node, and the build and maintenance cost is too expensive for small or medium business. In recent years, GPU was a popular parallel architecture for high performance computing as well as data mining [13]. However, the memory access cost is large, and the memory size is small. Therefore, effectively using the memory is the key to utilize the power of GPU.

Apriori algorithm [1, 2] and Frequent-Pattern Tree (FP-tree) algorithm [3] are two commonly used techniques for data mining. Apriori algorithm is simple, easy to understand, and easy to implement although it requires repeatedly scanning of database. However, Apriori algorithm is more suitable for parallel processing than FP-tree method since balancing the load while parallelizing...
The process of Apriori algorithm can be divided into two parts: (1) generate candidate itemsets and (2) check the candidate itemsets is frequent or not. In previous works [9, 10], we realize that part (2) can be completed in a short time. Therefore, we focus on how to reduce the scan range on database to enhance efficiency for candidate generating (part 1). In MATI, we proposed two strategies to reducing the processing time of generating candidate itemsets.

A. Itemset Block

In the process of generating candidate itemsets in Apriori algorithm, it used two frequent itemsets of current level, say k-itemset, to merge them to produce candidate (k+1)-itemset, and then to filter the generated candidate (k+1)-itemsets is frequent or not. It is not necessary to generate all possible (k+1)-itemsets’ candidates, we only need to merge these useful frequent itemsets.

We divide frequent itemsets into multiple blocks, all frequent itemsets with the same first item are put into the same block, and each block uses the same index. We call them as itemset block. The candidate (k+1)-itemsets are generated in same block only; these frequent itemsets will not existed in different block.

B. Task Dispatches

MATI algorithm can reduce unnecessary burdens by avoiding assign the same task to different cores. More importantly, the strategy can be more effective to balance the work load in the system.

The itemset has the same index in the itemset block. The frequent itemsets in the same itemset block will be generated on the same core in MATI. It avoids same index frequent itemsets of data distributed on different core.

MATI composes of two functions; the first one is similar to Apriori algorithm. It processes roughly the same as Apriori, but it used TID table to check the candidate itemsets is frequent or not. The second one (merging) is performing the process of two frequent k-itemsets merged into candidate (k+1)-itemsets.

MATI: main function

```plaintext
Structure a TID table and scan database
T = a transaction database over the set of items
K = 1; C_k = T; // K is merge round, C_k is candidate itemsets in K round
while C_k number > 1 do
    allocated candidate itemsets to each thread
    foreach thread do
        scan TID table
        if candidate itemset count > min support
            candidate itemset push F_k
        //F_k is frequent itemsets in K round
    end
    collect each thread’s frequent itemsets
    allocated frequent itemsets to each thread
    foreach thread do
        Merge function
    end
    collect each thread’s candidate itemsets
    k++
end
```
Merge function

if $k > 1$
 foreach frequent_itemset do
 index_item = frequent_itemset.item
 M_frequent_itemset = next frequent_itemset
 while index_item == M_frequent_itemset.item do
 if frequent_itemset.item, ..., frequent_itemset.item, == M_frequent_itemset.item, && frequent_itemset.item < M_frequent_itemset.item
 frequent_itemset merged with M_frequent_itemset
 else
 break;
 end
 M_frequent_itemset = next M_frequent_itemset
 end
 end
else
 foreach frequent_itemset do
 M_frequent_itemset = next frequent_itemset
 while M_frequent_itemset != NULL do
 frequent_itemset merged with M_frequent_itemset
 M_frequent_itemset = next M_frequent_itemset
 end
 end
end

Figure 1. An execution example of MATI.

Figure 1 illustrates the procedure of MATI, in the example, database has five transactions and five items, items from A to F, and the support is set to 40%. When MATI executes, it scans the database and builds the corresponding TID table. When the TID table is created, MATI can check the candidate itemsets rapidly from TID table. In figure 1, the L1 denotes the number of occurrence of 1-itemset in database, and all 1-itemset are frequent in the example. Then, MATI used L1 frequent item to generate table C_2, which contains only name of possible candidate 2-itemset. After C_2 was generated, MATI checks the TID table to fill in the number of occurrence in the table and then produce C_2'. Moreover, MATI prune the candidate itemsets, if candidate itemsets’ support is less than the minimum support, the result is shown as L_2. After finishing generated L_2, we can obtain four itemset blocks, such as, itemset block 1 = \{AC, AD, AF\}, itemset block 2 = \{BC, BD\}, itemset block 3 = \{CD, CF\}, itemset block 4 = \{DE, DF\}. When merging \{AC\}, \{AD\}, \{AF\} is proceeded, the first items is the same, therefore, MATI combined them into \{ACD\}, \{ACF\}, \{ADF\} in L_3. MATI repeats above process until non-frequent itemsets is found. L_4 is the final result in the example.

IV. EXPERIMENTAL RESULTS

In order to validate the efficiency of MATI, we implemented it in a multi-core architecture and compared the performance with the algorithm proposed by Chai [15]. The specification of simulation environment is as the followings: Intel(R) Core(TM) i5 CPU 650 @ 3.20GHz equips with 4G memory and 4MB cache memory. The experiment data is generated by IBM data generator [4].

In the experiments, we compared execution time against different size of dataset, transaction numbers, average transaction length, different threshold, and thread numbers. In experiment, para_TID denoted paralleled version of Apriori algorithm with TID; para_Chai denoted paralleled version of Chai algorithm.

The computation time is shown on Figure 2 when using the same data and threshold but different number of threads. MATI only takes 80 seconds when the number of thread is 2, while para-Chai takes more than 60000 seconds. When the number of threads increases, the execution time decreased to a stable state. In figure 2, we can observe that MATI performs best.
Figure 3. The execution time of different number of threads (Sup=0.001)

Figure 3 depicts the execution time when support is set to 0.001. We can see that MATI still has the smallest executing time, but the execution time of para_TID is lower compared with Figure 2. The reason is the threshold becomes higher lead to the number of frequent itemsets reduced. From figure 4, we can observe that the execution time of para_Chai decreased significantly when the value of support increased. However, MATI still has better performance than others.

Figure 4. The execution time of different support.

For the workload balance issue, we can observe in figure 5. Since MATI is capable to generate uniform number of candidates in each thread, the workload is evenly distributed in each core compared with para-Chai. Figure 5 is the execution result of dataset T1014D10KN100K, threshold is 0.0005, eight threads, and generated in level 2 (2-itemset).

Figure 5. Number of candidate items in 2-itemsets.

From the experimental results, we can conclude that MATI has more effective compared with para-Chai on multi-core architecture. MATI has 22.85 times of speed-up ratio compared with para_TID.

V. CONCLUSIONS

Mining frequent patterns from transactional database is an important problem in data mining research. Many sequential or parallel methods had been proposed to solve this problem. However, the execution time increases quickly if the data set grows. Therefore, in this paper, we proposed a multi-core based parallel frequent pattern mining algorithm, MATI. The experimental results showed that MATI could reduce the computation time if more cores are used. We also observed that the workload was balanced among each thread in MATI.

REFERENCES

Parallel Programming on Clusters of Multi-Core SMP Nodes,” Euromicro International Conference on Parallel, Distributed and Network-based Processing, May 2009, pp.427-436.

